
Using OpenQM with Python

The history of the Python language goes back about 30 years but it has become more widely used since the
release of version 3. Python shares many concepts with those familiar to QMBasic developers. It supports
both the structured programming and object oriented programming paradigms, loads modules dynamically
at run time and uses type variant variables.

Developers now have the ability to access the QM database from a Python program, including the ability to
run QMBasic programs, execute commands and read/write files. There is full support for locking,
transactions, select lists, alternate key indices, instantiation and execution of QM object oriented programs
and use of QM’s connection pooling system.

Rather than executing the QM functions in the same process as the Python program, the QM implementation
is based on the QMClient API. This has the important advantage that the two processes run with totally
isolated memory images to ensure that an error in the Python program cannot corrupt internal data
belonging to QM which could otherwise cause QM processes, perhaps even those unrelated to the Python
activity, to fail in a manner that might be difficult to track down.

QMClient also allows the choice of running both processes on the local system or using a network connection
to a remote QM server. A Python program can work with multiple simultaneous QM connections, including
the ability for the Python process to be multi-threaded.

Use of the QMClient API also means that the developer can use the Extended Character Set (ECS) version of
QM to access files that may be a mixture of 8-bit and Unicode data.

The simple example Python program below connects to the PY account on the local QM system, opens the
ORDERS file, builds a select list of orders and then, for each order, prints the order number, customer
number and order date.

if qm.ConnectLocal("py"):
 fno = qm.Open("ORDERS")
 qm.Select(fno,1)
 while True:
 id = qm.ReadNext(1)
 if id == "": break

 rec, err = qm.Read(fno, id)
 date = qm.Extract(rec, 1, 0, 0)
 cust = qm.Extract(rec, 2, 0, 0)
 print(id, cust, qm.OConv(date, “D2DMYL[,A3]”))

 qm.Disconnect()
else:
 print(“Failed to connect.”,QMError())

Ladybridge Systems
Open

Ladybridge Systems, 17b Coldstream Lane, Hardingstone, Northampton, NN4 6DB, England
www.ladybridge.com www.openqm.com sales@ladybridge.com

